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Abstract—Ultrasound (US) imaging deals with forming a
brightness image from the amplified back-scatter echo when an
ultrasound wave is triggered at the region of interest. Imaging
artefacts and speckles occur in the image as a consequence of
back-scattering and subsequent amplification. We demonstrate
the usefulness of speckle related pixels and imaging artefacts as
sources of information to perform multi-organ segmentation in
US images of the thyroid gland. The speckle related pixels are
clustered based on a similarity constraint to quantize the image.
The quantization results are used to locate useful anatomical
landmarks that aid the detection of multiple organs in the image
which are the thyroid gland, the carotid artery, the muscles
and the trachea. The spatial locations of the carotid artery and
the trachea are used to estimate the boundaries of the thyroid
gland in transverse US scans. Experiments performed on a
multi-vendor dataset yield good quality segmentation results with
Probabilistic Rand Index (PRI) > 0.83 and Boundary Error (BE)
< 1mm, and an average accuracy greater than 94%. Analysis
of the results using the Dice co-efficient as the metric shows
that the proposed method performs better than the state-of-the-
art methods. Further, experiments conducted on 971 images of a
publicly available dataset prove the effectiveness of the algorithm
to track the carotid artery for guided interventions. In addition to
US guided interventions, the algorithm can be used as a general
framework in applications pertaining to volumetric analysis and
computer aided diagnosis.

Index Terms—Echogenicity, ultrasound image segmentation,
thyroid gland, multi-organ segmentation, local phase.

I. INTRODUCTION

LTRASOUND (US) image segmentation has been a hot

topic of research for over two decades. Attempts at
segmenting US images can be dated back to the 1980’s when
US imaging started to gain importance as a diagnostic device
in a clinical setting [1]. A survey by Noble and Boukerroui [2]
conducted in 2005 gives an insight into the amount of research
that has gone into developing US segmentation algorithms.
The field has not run out of steam even after ten years since
the survey was conducted. This can be attributed to the ever
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changing US imaging technology. The advances in transducer
technology, beam forming technology etc., have led to the
introduction of 2D+T, 3D and 3D+T US image acquisition
systems along with improvements made to the baseline 2D US
imaging system [3]-[5]. Such progress in the imaging systems
has created a need to upgrade the segmentation algorithms in
order to keep up with the technological growth.

This has to be done in a way to provide the best possible
information for a clinician to make a diagnosis. The desirable
features (information inferred from the output of a segmen-
tation algorithm) that help a clinician are described in detail
in [6] and have been concisely stated by Quistgaard [3] as:
(a) Like tissues look alike and unlike tissues look different;
(b) Cystic tissues look cystic and solid structures look solid;
(c) Low attenuators show acoustic enhancement and high
attenuators show shadowing; and (d) Boundaries of organs
and structures are visible. In the words of Quistgaard [3], “one
might decide that it would be a good idea to process an image
to remove acoustic shadowing and enhancement behind cystic
structures, though it is extremely valuable information to the
clinician. A speckle-reduction algorithm might obscure subtle
textural differences in tissue that may indicate pathology.
Spatially variant contrast-enhancement procedures may make
identical tissues look different”. The take away message here is
that a segmentation method should not alter the characteristics
of a tissue in the image under the pretext of providing valuable
information to the clinician. Hence, a segmentation algorithm
is considered clinically relevant if it outputs the desirable
features listed above.

Research in medical imaging in general is headed in the
direction of developing techniques to perform multi-organ
segmentation [7]. The goal of this research work is to perform
multi-organ segmentation in images of the thyroid gland
obtained from a freehand 2D US imaging system. The seg-
mentation method proposed in this research work adheres to
the standards set by [3] and [6] in order to contribute to
the ongoing research on developing clinically relevant US
image segmentation algorithms. Here, the tissues that look
alike are grouped together based on tissue echogenicity and
the acoustic enhancements produced by low attenuators are
used as landmarks to segment the different tissues so that the
boundaries between different organs are clearly outlined. The
input image is not pre-processed for contrast-enhancement or
speckle-reduction as is the case in a majority of segmentation
algorithms developed for US images.

The proposed algorithm automatically segments the trans-
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verse and longitudinal US scans (Fig. 1) into the thyroid
gland and muscles. In addition to this, the transverse scans
are also segmented into the carotid artery and trachea. The
highlight of this research work is the usage of speckle related
pixels to quantize the input US image. The quantization levels
correspond to the regions of similar reflectivity which are
identified based on tissue echogenicity. The motivation to use
speckles for tissue characterization and a brief literature review
are presented in Section II. The multi-organ segmentation
algorithm is presented in Section IIl. Experimental results,
Discussion and Concluding Remarks are presented in Sections
IV, V and VI, respectively.

II. LITERATURE REVIEW

Segmentation algorithms for US images of the thyroid gland
are needed to: (a) Automatically detect nodules in the gland;
(b) Automatically estimate the volume of the gland; and
(c) Perform guided interventions. Keramidas et al. [8] and
Maroulis et al. [9]-[11] propose methods to segment nodules
within the thyroid gland for computer aided diagnosis. Chang
et al. [12] and Garg et al. [13] treat the segmentation of the
thyroid gland as a binary classification problem and use neural
networks to classify the pixels of the image as belonging to
the non-thyroid or thyroid gland. Kollorz et al. [14] propose
the use of geodesic active contours to segment the thyroid
gland. Authors in [12] and [14] use the segmentation results
to estimate the volume of the thyroid gland in 2D US images
and 3D US volumes, respectively.

Segmentation methods in the field of guided interventions
mainly focus on segmenting and tracking the common carotid
artery in 2D and 2D+T US images. To date, there have been
three attempts to segment the carotid artery in transverse US
scans of the thyroid gland. They are: (a) The Star Kalman
algorithm [15]; (b) The Star Extended Kalman algorithm [16];
and (c) The Spokes Ellipse algorithm [17]. These are variants
of the Star algorithm that was proposed by Friedland et al.
[18] to segment and track the ventricular cavity boundaries
in 2D+T US images. The methods are semi-automatic and
model the carotid artery as an ellipse whose parameters are
estimated along pre-defined radial lines emanating from a seed
point manually provided by expert sonographers.

A. Multi-Organ Segmentation

A majority of multi-organ segmentation algorithms pro-
posed in literature are learning based and employ classi-
fiers based on decision trees that are trained using Haar
like features to segment the images [19]-[22]. Multi-organ
segmentation algorithms have also been developed using atlas
based registration and learning of shape contexts to segment
CT volumes [23], [24]. Extension of shape based methods to
US imaging requires a fixed landmark or a co-ordinate system
to register the images first and then perform segmentation
by classification. This is done by making use of markers
attached to the probe and an external tracking device to
map the movement of the probe in 3D. There is a chance
that the shape-based supervised segmentation algorithms may
perform sub-optimally even after registering the images using

Fig. 1. Ultrasound image of the right lobe of the thyroid gland in (a)
transverse and (b) longitudinal scans, depicting the boundaries of the thyroid
(in purple), the carotid artery (in red), the muscles (in blue) and the trachea
(in green) that have been manually delineated by a trained sonographer.

(b)

Fig. 2. Results of applying the segmentation method of [12] on the input
US image of Fig. 1(a) when the negative class includes samples from : (a)
the carotid only ; and (b) both muscles and the carotid. In both cases, the
positive training set comprises of samples from the thyroid gland.

the information provided by the external markers. This is
because organs in a US scan undergo deformation under
probe-pressure. Deformation of organs under probe pressure
might result in the shape of organs in the training set to be
different from the shape of organs in the testing set. Shape
information for supervised segmentation can be used if the
deformation can be successfully modelled and corrected. But
modelling the deformation is a daunting task as it is subject
to inter-observer variation. Different sonographers may apply
different probe pressures and the degree of organ deformation
might vary among the acquired images. Hence, a shape-based
supervised segmentation algorithm trained using the dataset
of one sonographer may not perform well on the dataset of
another sonographer, thereby, rendering the algorithm to be of
little use in a clinical setting.

The performance of a supervised segmentation algorithm
also depends on the modelling bias. This is illustrated in
Fig. 2, where the supervised thyroid segmentation method of
[12] produces two different segmentation results when two
different sets of training samples are used for the negative
class. Moreover, supervised segmentation algorithms require
large databases of manually annotated datasets to train the
classifiers. Acquiring such a large database of datasets and
having each image manually labelled for a number of different
anatomical structures is expensive and time consuming.

Unsupervised segmentation algorithms, on the other hand,
do not suffer from modelling bias and can be used for
exploratory data analysis. Unsupervised algorithms have pre-
viously been employed to perform tissue characterization
and binary segmentation in CT and US images [25]-[27].
Linguraru et al., [28] make use of graph cuts to perform
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Fig. 3. Segmentation framework

multi-organ segmentation in CT images of the abdomen. Other
than the initial feasibility study undertaken in [29], to the
best of the authors’ knowledge, an unsupervised multi-organ
segmentation scheme has not been proposed so far for US
images.

B. Speckle in US images

Speckles in US images have always been treated as noise
and in a majority of segmentation algorithms, the first step
is to filter the image using variants of edge preserving filters
[14], [30]-[32] to remove the speckle noise. Attempts have
been made to model the noise statistics [33]-[35] and filter
the RF signal for speckle noise removal at the envelope
detection stage of US image formation. Methods have also
been proposed to estimate the amplitude of the RF signal from
the gray-scale image for speckle detection and filtering when
the log compression parameters are unknown [36], [37]. But a
closer look at the physics behind the formation of speckles
in US images reveals that speckles are formed as a result
of US waves being subjected to constructive or destructive
interference after being scattered by cells in a tissue that
are of size comparable to the wavelength of US waves [38].
Therefore, treating speckles as noise would be wrong since
they are formed in the image due to the interaction of US
waves with the tissues.

Thijssen et al. [39] analyze speckles in US images by
taking into consideration the imaging physics involved in their
formation. An in depth explanation is provided about the
different statistical models (Rayleigh, K or Rician distribution)
of speckle noise. The authors have also discussed the rationale
behind the use of 1% and 2" order statistics (Signal to Noise
Ratio (SNR), auto-correlation, co-occurrence matrices etc.)
to analyze the texture of US images. Statistical analysis of
speckles and processing of it is valid only when a linear
processing of the detected US envelopes is assumed. But in
reality, all US images that are displayed and stored would
have undergone some sort of logarithmic compression, the
parameters of which are proprietary to the manufacturer [3].
The authors in [39] conclude with a note that the future of US
imaging rests on clinical applications developed by making use
of speckle related tissue characterization. In the spirit of the
work by Thijssen et al. [39], speckle related pixels are used in
this research work to characterize tissue based on echogenicity
and perform multi-organ segmentation of US images of thyroid
gland in an unsupervised manner.
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Fig. 4. Flow diagram of the proposed quantization algorithm.

IIT. MULTI-ORGAN SEGMENTATION OF ULTRASOUND
IMAGES OF THYROID GLAND

The proposed segmentation framework is depicted in the
flow diagram of Fig. 3. The protocol for scanning a thyroid
gland involves scanning the gland in two orthogonal planes
called the transverse scan and longitudinal scans, respectively
as shown in Fig. 1 [40]. The nature of anatomical structures
observed under each of these scans is different and hence the
landmarks chosen to perform the segmentation vary with the
type of scan making it necessary for two algorithms for the two
types of scans. Common to both the segmentation algorithms
are the Field of View (FOV) extraction and quantization steps.
The FOV, which is the rectangular or conical imaging window
in the input US image, is extracted using the scheme proposed
in [41]. Once the FOV is extracted, the quantization step
follows as described in Section III-A.

A. Echogenicity Based Quantization

The term echogenicity refers to the relative brightness
between different tissues in the US image [40]. Hyperechoic
tissues appear brighter than hypoechoic tissues and iso-echoic
tissues have the same brightness in the US image. A normal
thyroid gland is hyperechoic compared to the muscles (in
transverse and longitudinal scans) and hypoechoic compared to
the enhancement artefact cast by the carotid artery. The carotid
artery, jugular vein and the trachea are anechoic structures
(transverse scans only) [42]. The omohyoid and strap muscles
are iso-echoic to each other, the carotid artery and the trachea
are isoechoic to each other (excluding artefacts in trachea).
Hence, the US image of the thyroid gland can be viewed as a
pattern of two or more isoechoic regions. In the scope of this
research work, quantization is formulated as the grouping of
the pixels in the US image into the different isoechoic regions.
Since the isoechoic tissues reflect the incident US waves to the
same extent, we term each region in the US image containing
isoechoic tissue as a Similar Reflective Region (SRR’s).

Each SRR is a quantization level and the number of SRR’s
in the input image depends on the imaging plane that is under
consideration. The flow diagram of Fig. 4 shows the steps
followed to quantize the image. The number of SRR’s is the
number of clusters formed by the hierarchical (agglomerative)
clustering of patches of the image around speckle related
pixels using the speckle patch similarity constraint. It is
assumed here that a small patch of the image surrounding
a speckle is similar to another patch around another speckle
in the same tissue or any other iso-echoic tissue.

1) Estimating the number of SRR’s: Let the input ultra-
sound image of size M x N be denoted by f(x), where x is
the vector of the 2D pixel coordinates (z,y) and = € [1, M]
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and y € [1, N]. Let all the pixels in the image be represented
by a set F = {x}, where k € [1,|F]|]. Assuming that the
formation of a speckle at a point in the US image corresponds
to the occurrence of local maxima or minima at that point,
the set of pixels F; associated with speckle in the image is
obtained by applying the second order partial derivative test
[43] given by Eq. (1) as:

> f(x)
S |H 0 and 0 1
Fo= i JH() > 0and 5% > 08
where,
azé(x) 8(;féx)
H(f) = Bzf(lX) 623”(3) 2
Oyozx 92y

is the Hessian matrix and |H(f)| its determinant.

For every pixel x,, in F,, an Mg X M1 Region of Interest
(ROI) is defined with x,, at its centre. The brightness values
f(x) at each of the M2, pixel locations in the ROI are denoted
by a 1 x M3, vector r. Two pixels x,, and x,,, belong to the
same SRR if their respective ROI’s r,, and r, (m # n and
m,n € [1,|Fs|]) satisfy the constraint:

Smn = S(I‘m, rn) S T, (3)
where,
M3,
S(rnu rn) = Z (rm(k) - rn(k))Z , M 7é n, (€]
k=1

and 7 is a pre-defined threshold. The threshold 7 largely
decides which SRR the ROI belongs to and is chosen in such
a way that it is more sensitive to the regions that are hypo-
echoic to the thyroid gland. The larger the value of 7, the
higher is the sensitivity of the algorithm to the hypo-echoic
regions. A detailed discussion on the selection of 7 is provided
in Section IV.

An agglomerative clustering scheme is used to obtain an
initial estimate on the number of SRR’s in the image. A pixel
X, 1s chosen at random from F; and pairwise similarities with
the rest of the pixels in the set are computed using Eq.(4). The
pixels that satisfy the constraint of Eq.(3) are grouped under a
single class label. The process is repeated, by choosing another
unlabelled pixel from F;, until all the pixels are classified.
The presence of shadow artefacts results in pixels of the same
tissue being classified into multiple SRR’s thereby leading to
the overestimation of the number of SRR’s in the image. This
is corrected by merging the groups by the method outlined in
Algorithm 1. The number of unique class labels that remain
in the image after the merging process is the final estimate of
the number of SRR in the input ultrasound image.

The remaining pixels that are not a part of Fs are then
classified into the newly estimated SRR’s using morphological
operations. Given an SRR, a binary image is formed by
retaining the pixels at that level as foreground pixels and
resetting the remaining pixels to background. The holes in
the binary image whose spatial locations do not overlap with
the pixels belonging to other SRR’s are morphologically filled
and the pixels are assigned the label of the SRR that is

Algorithm 1 Merging pixels to obtain final SRR estimate

1: initialize Construct an empty [ x [ accumulator matrix A
with each element represented by G, m,n € [1,1].

2: repeat

33 form=1to!l do

4: For every pixel having a label )\, , define a Mp; x
Mgy ROI around the pixel.

5: Determine the class label of the all pixels in the ROI
excluding the pixel under consideration.

6: Increment the value of a,,, if there exists at least
one pixel with the class label \,,, where n € [1,]],
in the ROL

7: If apmm < @mp, re-assign the labels of all the pixels

having class label A, with \,.
8: end for
9: until there are no more class re-assignments.

under consideration. The process is repeated until all the
SRR’s are covered. Let L denote the final estimate of the
number of clusters and I,,, m denote the average intensity of
the m™ SRR, then intensity of the pixels in the quantized
image fo(x) takes on values in the range [Juye 1, fave 1] With
Iavg_l < Iavg_2~-~ < Iavg_L~

B. Detecting and Segmenting the Carotid in Transverse Scans

The carotid artery being anechoic, exhibits an enhancement
artefact directly underneath it. Regions of enhancement arte-
facts directly correspond to the pixels with intensity value
Iwe 1 in fo(x). So the possible candidates for the carotid
artery are the pixels with the lowest Iy  directly above the
pixels with values I, 1. A binary image fyc(x) is formed
with the pixels above the enhancement artefacts that belong
to the carotid candidates as foreground pixels and the rest as
background pixels. Since the carotid appears as an ellipse,
for every component which is a carotid candidate an ellipse
is constructed using linear least squares method. [44]. From
the list of possible candidates in the binary image, the carotid
artery is detected and segmented by the application of local
phase based methods.

The local phase of an image f(x) is calculated from the
monogenic signal formed from the output of three filters [45],
[46]. The image is first bandpass filtered using quadrature
filters to obtain a filtered image f.(x). This represents the even
component of the monogenic signal. The odd component of
the monogenic signal, f,(x) is obtained by convolving f.(x)
with two anti-symmetric filters o1 (z,y) and oz(z,y):

Fola,y) = V(01(x) @ fe(x))? + (02(x) ® fe(x))2 (5)

where ® refers to the convolution operator,

- -y
=— " _andoy(x)=——F . (6)
@1t N T et €

The local phase of the image is then obtained as:

- (£2)

01 (X)

)
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Fig. 5. Sequence of images showing the segmentation of carotid in transverse
US scans where: (a) is the input US image;(b) is the quantized image fq (x);
(c) is the image of the carotid candidates with pixels that have FC > 0.45
highlighted (in gray) and (d) is the segmented carotid (in red).

The choice of the quadrature bandpass filter is purely appli-
cation dependant and a detailed comparative account can be
found in [47]. Log Gabor filters have previously been used in
[45] and [46] to filter the image. In this research work, scale
and orientation invariant filter proposed by Mellor and Brady
[48] is used to bandpass filter the image. The impulse response
of the filter is given by:

A B
Ty (Vo7
where, § < « with A and B chosen such that the integral of
the fractions over z,y is unity.

With the local phase calculated, the phase congruency or
feature assymetry is then obtained as:

FC(x) = L fe()] = o)l — TSJ’ o)

fe(x)? + fo(x)? + €

where |.| denotes the flooring function to zero and

T _eﬁ S log(y/ fe (%)% +fo(%)?)

h(x) = ®)

(10)

In [46], it was noted that FC values close to 1 indicated the
presence of structurally significant boundaries in an ultrasound
image. So the candidate with the highest number of pixels
having FC(x) > 0.45 within it is chosen as the most likely
candidate for the carotid. The pixels of this candidate are
retained as foreground pixels in fyc(x), with the rest reset
to background pixels. The selected candidate is indeed the
carotid and segmented in the image f(x) if:

D (fre(x))(1 = H(g(x))) > 0. (11)
and -
Ecc=1/1— % > 0.75, (12)

where, H(.) represents the Heaviside function and Ecc is the
eccentricity of the candidate ellipse with major axis a and
minor axis b. The constants of Eq. (9) and Eq. (12) are
empirically chosen. Figure 5 shows the process of segmenting
the carotid in transverse US scans of the thyroid gland.

C. Segmenting the Trachea, Muscles and the Thyroid in Trans-
verse Scans

The trachea is segmented by applying connected component
analysis to the binary image ¢;,(x) given by:

¢o(x) = (1 — H(g(x)).

The largest component of ¢ (x) attached to the component
at the bottom of the image is segmented as the Trachea.

Muscles in an US image of the thyroid gland are found
above the carotid and thyroid and below layers of fatty
tissue that appear hyperechoic. The muscles are segmented
by making use of the carotid as the landmark. Similar to the
segmentation of the trachea, the muscles are segmented by
applying connected component analysis on the binary image
db(x) — forre(x). The largest component above the carotid
belongs to the Omohyoid muscles. The components that lie
in between the upper and lower bounds of a bounding box
around the Omohyoid muscles belong to the strap muscles.
The pixels in the components belonging to the Omohyoid
and Strap muscles are together labelled as muscles in the
segmented image.

The spatial locations of carotid, trachea and muscles are
used as landmarks to segment the thyroid. The location of the
trachea is used to determine the lobe of the thyroid gland that
is in the image. The image is of the right lobe of the thyroid
gland if the ordinate of the centroid of the trachea is greater
than %, else it belongs to the left lobe. In order to detect and
segment the lower boundary of the thyroid gland, the binary
image ¢ (x) given by:

Pp(x) = [1 = dp(x)] = [H(¢(x))],

where, [.]| stands for the ceiling operator, is considered. All
the pixels from the first row of the image up to the lower
boundary of the muscles are set as background pixels in ¢ (x).
The co-ordinate of the highest point of the trachea, xr, and
the centroid of the carotid X, are then determined from the
segmented carotid and trachea, respectively. All the edge pixels
in f(x) that lie immediately under a digital line running from
X1r to Xcr form a part of the lower boundary of the thyroid.
The digital line is given by [49]:

13)

(14)

n=[rxm]+eV¥me][l, Mand|r| <1, or (15)
m = [ﬁ] +¢,Vn € [1, N]and|r| > 1, (16)
r

where,

- Ycr — Yt1r (17)
Tcr — LT
and

C=1Ycr — Txcr OF C = Y1y — 'Ly (18)

The lower boundary of the thyroid is obtained by fitting a
spline to the edge pixels just determined. The thyroid gland
comprises of the pixels in ¢, (x) that are above the estimated
lower boundary; in between the carotid, lower boundary of
the muscles and the upper boundary of the trachea. Figure 6
shows the segmentation of the transverse US scans of thyroid
gland along with the estimated anterior boundary of the thyroid
gland.

D. Segmenting the Thyroid and Muscles in Longitudinal Scans

In longitudinal scans, the thyroid gland is segmented di-
rectly by making use of the composite image fo(x) of Section
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(b) (©)

(d)

Fig. 6. Estimating the lower boundary of the thyroid gland. (a) Input image
in transverse scan; (b) Quantized image fq (x); (c) Estimated lower boundary
of thyroid gland and (d) Segmentation results with the thyroid in Magenta,
the carotid in Red, muscles in Blue and the trachea in Green.

III-B and the local phase ¢(x) information. All the pixels of
the image that are associated with SRR’s whose I s lie
the range [/1, 12], such that I1 < Iy, ,» < 12, are labelled as
foreground pixels with the rest labelled as background pixels
and stored as a binary segmentation mask fypask (X). Although
the bulk of the thyroid is present in fypmask (X), the segmentation
is incomplete as the mask contains leaks into muscles and the
lower non-thyroid region of the US image. A local phase based
method is employed to segment the thyroid gland without any
segmentation leaks.

The local phase image ¢(x) and a binary image ¢ (x) are
obtained using Eq.(14) and Eq. (7), respectively. Connected
component labelling is then applied on the binary image and
the pixels of the largest component in ¢(x) are retained as
the foreground pixels. The component is that of the thyroid
gland if:

> Fortask ()5 (x) > 0. (19)

In order to segment the muscles in the longitudinal scan, the
binary segmentation ¢;(x) mask of Eq. (13) is considered and
all the pixels below the upper boundary of the thyroid are set
as background pixels. Connected component labelling is then
applied to ¢,(x) to determine the components of the binary
image that belong to the muscles. For each row in the labelled
image, the histogram of class labels is obtained and the label at
which the histogram peaks is stored in an accumulator array.
The total number of pixels belonging to each of the labels
in the accumulator array is then determined and the array is
sorted in descending order. The top two labels in the sorted
accumulator array belong to the Omohyoid and Strap muscles.
The pixels that belong to these labels are labelled as muscles
in the segmented image.

IV. RESULTS
Figure 7 shows the results on transverse and longitudinal
scans of the thyroid gland. The dataset and metrics used to
evaluate the performance of the segmentation algorithm are
described in detail in the subsections that follow.

A. Datasets and Ground Truth

Two sets of anonymized US images in B-mode were retro-
spectively collected from two hospitals‘:

o Set I (S1): consists of 34 images (20 transverse and 14

longitudinal) from 6 patients and 6 volunteers acquired

(a) Input

(b) Proposed (c) JCR [21] (d) GT

Fig. 7. Segmentation results in transverse (1 row) and longitudinal US scans
(2“d row) of thyroid gland where the thyroid, carotid, muscles and trachea are
colour coded in Magenta, Red, Blue and Green, respectively, for illustrative
purposes. (a) Input US image; (b) Results of the proposed algorithm on the
input in (a); (c) Results of applying the supervised multi-organ segmentation
algorithm of [21]; and (d) Ground truth segmentation.

TABLE I
PERFORMANCE MEASURE OF THE PROPOSED SEGMENTATION SCHEME IN
TERMS OF PRI, GCE, VOI AND BE. A GOOD SEGMENTATION
ALGORITHM HAS PRI VALUES CLOSE TO ONE WITH GCE, VOI AND BE

VALUES CLOSE TO ZERO, RESPECTIVELY.

Dataset PRI GCE VOI BE
(pixels)
Transverse (Set 1) 0.8611 0.1770 1.1357 11.42
4+0.0260 +0.0310 +0.1453  +2.193
.834. 2 1. 2 11.172
Transverse (Set 2) 0-8345 0-2300 359 729
+0.0410 +0.0604 +0.2850 +3.121
. 2 .1692 1.01 14.
Longitudinal (Set 1) 0-835 0-169 013 o7
+0.0436  4+0.0413  +£0.1870 +3.051
TABLE 11
QUANTITATIVE ANALYSIS ON THE TRANSVERSE SCANS OF SET 1 *.
A
Organ GT  SE Sp DSC PPV Ve
Acc
El 0.982 0.827 0.854 0.889
. +0.007  £0.074 +0.033  £0.042 0.959
Thyroid
B 0.974 0.884 0.855 0.835 +0.012
+0.010 £0.070 +0.045 +0.069
El 0.998 0.856 0.879 0.912
. +0.002 +0.073  £0.035 +£0.064 0.995
Carotid
B 0.997 0.916 0.895 0.883 +0.001
+0.001  £0.069 +0.037 +0.062
El 0.990 0.778 0.847 0.946
+0.009 +0.129 +£0.082  +0.039 0.955
Muscles
0B 0.959 0.934 0.829 0.753 +0.019
+0.021  £0.070 +0.062  +0.093
El 0.980 0.874 0.863 0.864
+0.017  £0.083 +0.036 £0.072 0.968
Trachea
B 0.974 0.885 0.834 0.804 +0.013
+0.017  4+0.100 +£0.062  +0.108

* El and E2 stand for the GT provided by expert 1 and expert 2, respectively.

at the Tan Tock Seng Hospital, Singapore, using Hitachi
HI Vision Avius Ultrasound equipped with an L75 5-
18MHz probe. All images have a resolution M x N equal
to 511 x 510. Informed consent was obtained from the
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TABLE III
QUANTITATIVE ANALYSIS ON THE TRANSVERSE SCANS OF SET 2 *.
Organ  GT  SE sp DSC PPV Ave
Acc
El 0.964 0.829 0.810 0.804
. +0.013 £0.074 +£0.026 +0.063 0.945
Thyroid
B 0.951 0.917 0.808 0.730 +0.008
+0.018 +£0.056 £0.034 £0.076
El 0.999 0.816 0.882 0.968
. 4+0.001 £0.075 +£0.039 +0.039 0.994
Carotid
2 0.998 0.856 0.878 0.909 +0.001
4+0.001 £0.062 +0.017 +0.049
El 0.993 0.653 0.767 0.946
+0.003 £0.136 +£0.104 +0.036 0.944
Muscles
B2 0.975 0.805 0.805 0.808 +0.024
4+0.004 £0.123 +£0.088 +0.054
El 0.971 0.878 0.876 0.886
+0.024 +0.081 +0.026 +0.073 0.946
Trachea
B2 0.941 0.901 0.788 0.720 +0.029
+0.046  £0.072 +£0.099 +0.170

* E1 and E2 stand for the GT provided by expert 1 and expert 2, respectively.

TABLE IV
QUANTITATIVE ANALYSIS ON THE LONGITUDINAL SCANS OF SET 1 *
SE sp DSC PPV Ave
Acc
El 0.942 0.920 0.870 0.830
. 4+0.035 +£0.036 +0.052 +0.084 0.921
Thyroid
) 0.919 0.960 0.834 0.749 +0.051
4+0.048 +0.026 4+0.079 +0.125
El 0.996 0.611 0.732 0.973
+0.005 £0.180 +£0.159 +0.030 0.935
Muscles
0 0.964 0.766 0.691 0.673 +0.030
4+0.028 +£0.259 +0.236 +0.273

*El and E2 stand for the GT provided by expert 1 and expert 2,
respectively.

volunteers before acquiring their thyroid US scans.

o Set 2 (S2): consists of 18 images in transverse scan from
10 patients acquired at Mt. Elizabeth Hospital, Singapore,
using GE Logiq Ultrasound equipped with L6-12-RC
probe. The images have a resolution M x N equal to
820 x 614 .

o Supervised Set (SS): This dataset consists of 24 images
(15 transverse and 9 longitudinal) to train and 16 images
(11 transverse and 4 longitudinal) to test supervised
learning-based segmentation algorithms. Of the 15 train-
ing images in transverse scan 12 are from Set 1 and 3 are
from Set 2. All images (train and test) in the longitudinal
scan are from Set 1.

The datasets consist of a mix of images that are of the
right or left lobes of the thyroid gland. The images were
acquired at the mid or lower pole with the patient in supine
position. Images that were affected by abnormalities leading to
organ occlusion are excluded from the study. All images were
acquired at a centre frequency of 10 MHz. Since the datasets
were retrospectively collected, the Time Gain Compensation
(TGC) setting used during imaging is unknown.

Ground Truth (GT): Two expert Otorhinolaryngologists who
are also trained sonographers at Tan Tock Seng hospital, Sin-
gapore, were asked to manually delineate the organs (Muscles,
trachea, thyroid and carotid) using the ITK-SNAP software
[50]. GT acquisition is an ongoing process and is available
for 40 of the 52 images (20 Transverse and 14 Longitudinal
in Set 1; 6 Transverse in Set 2). So the performance of the
proposed segmentation method is validated on 40 images for
which the GT is available.

B. Qualitative and Quantitative Assessment

The proposed segmentation algorithm is qualitatively as-
sessed using Probabilistic Rand Index (PRI) [51], Global
Consistency Error (GCE) [52], Variation of Information (VOI)
[53] and Boundary Distance Error (BE) [54] metrics. The
results of a segmentation algorithm are considered to be of
good quality if the PRI € [0, 1] has a value that is close to one,
GCE € [0, 1] has a value close to zero, VOI and BE € [0, c0)
have values as low as possible [55]. The performance of the
multi-organ segmentation scheme in terms of PRI, GCE, VOI
and BE is summarized in Table I. An extension to the PRI
is the Normalized Probabilistic Rand (NPR) Index [56]. The
NPR index is used to select the optimal parameters needed in
the SRR estimation algorithm of Section III-A. The optimal
parameters for the SRR estimation are those that have a high
NPR index.

The segmentation algorithm is also quantitatively evaluated
by using metrics that measure the amount of overlap between
the Ground Truth (GT) and the segmentation results. The
overlap measures used for validation are: (1) Sensitivity (SE);
(2) Specificity (SP); (3) Dice Coefficient (DSC) and (4) True
Positive Rate (TPR) or Positive Predictive Value (PPV) and
(5) Accuracy (Acc) given by:

™ TP TP + TN
E=—— " . SP——— . Acc=—— " (2
BN P T I N A T Ay, Y
TP 2 % TP
PPV—_ . DSC=— X 21)
TP 1 FP 2 x TP + FP + EN

where TP, TN, FP, FN, Ap and Ay stand for True Positives,
True Negatives, False Positives, False Negatives, All Positives
and All Negatives, respectively. The performance of the algo-
rithm in terms of overlap metrics of Eq. (21) is summarized
in Tables II, IIT and IV, respectively.

C. Comparison with state-of-the-art

Segmentation results of the proposed method are compared
with our implementation of the following state-of-the-art meth-
ods and the results are summarized in Table V.

1) Segmenting the carotid artery: The semi-automatic
methods of [15], [16] and [17] mentioned in Section II
are implemented for this comparative study. The centroid of
the GT carotid segmentation (pixels of carotid that lie in
the intersection of the two manually segmented regions) is
chosen as the seed point to initialize the algorithms. Values
of the parameters used in our implementation to execute the
algorithms are the same as those reported in the respective
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papers for optimal performance. In addition to these, the star
algorithm of [18] has also been implemented as [15] and [16]
are variants of this method.

2) Segmenting the thyroid gland: The thyroid segmentation
algorithm of [12] is implemented by first determining the prob-
able thyroid region followed by applying adaptive weighted
median filtering and morphological closing of the image. Then,
features such as: (a) Co-efficient of Local Variation; (b) Block
Difference of Inverse Probabilities; (c) Normalized Multi-
Scale Intensity Difference;(d) Haar wavelet based features; and
(e) histogram features are extracted in a 16 x 16 rectangular
window. An RBF neural network is trained using the features
extracted from the images in the training set of SS. The
parameters used at every stage in our implementation are
the same as those reported in [12]. Each test image in SS
is divided into blocks of size 16 x 16 pixels, with 50%
overlap between the blocks. The blocks are then classified
into the thyroid or non-thyroid region by the trained classifier.
The resulting image is post-processed by the recommended
morphological operations. A similar approach is followed in
implementing the method proposed by Garg et al. [13] with
the following changes: (a) feature set is changed to histogram
based features and multi-scale Haar wavelet based features;
and (b) the classifier changed to feed-forward neural networks.
It should be noted here that the regions belonging to the
thyroid gland form the positive class and regions not belonging
to the thyroid gland (carotid, muscles and the trachea) form
the negative class. Overall 66 samples (33 positive and 33
negative) are generated to train the neural network classifier.

3) Unsupervised multi-organ segmentation: An initial fea-
sibility study was undertaken in [29] to study the effects
of speckle related pixels on multi-organ segmentation. The
proposed method is different from that of [29] in the following
ways: (a) the number of echogenic levels are not restricted to
three; (b) patches of image around speckles are clustered using
a similarity constraint instead of clustering individual pixels
based on intensity; (c) imaging artefacts are used as landmarks
to detect the carotid artery instead of using an energy based
approach; and (d) local phase based methods are used in the
segmentation process.

4) Supervised multi-organ segmentation: The Joint Classi-
fication Regression (JCR) algorithm proposed by Glocker et
al. [21] to perform multi-organ segmentation in CT images of
the abdomen method is modified for use on US images so that

it can be compared with our method. In our implementation
of [21], the adaptive weighted median filter of [12] is used
with a window size of 5 x 5 to filter the image for noise
removal. Five variants of the box features are extracted from
the filtered image. The box sizes vary between 5Smm and
10mm, and displacements of the boxes are drawn from a
[0,10mm)] interval. In all, 369 features are extracted per pixel
in every organ from the training images in SS. Bagging is used
to train 50 trees where each tree is trained on a random subset
containing 10% of the total number of training samples. At
each split node, 40 features are evaluated from the pool of
369 features and for each feature 10 different thresholds are
employed that are uniformly distributed along the range of
feature responses. The distance from every pixel in one organ
to the nearest pixel of another organ obtained using signed
distance maps is used for regression.

V. DISCUSSION

The SRR estimation method proposed in Section III-A is an
agglomerative clustering algorithm and the number of clusters
converges to the trivial solution of one level for a very large
7. This behavior can be observed in the plots of Fig. 8. The
number of SRR’s obtained remain more or less steady at 5 +
2 levels for 7 between 100 and 400 and converges to one
level for 7 > 10000. Figure 9 shows the performance of the
SRR estimation algorithm in terms of NPR at different 7 and
Mg . From the plots it can be inferred that the SRR estimation
algorithm performs at its best when 7 = 100 and Mpg; = 3.
Hence, all experiments are conducted by setting 7 and Mp,
equal to 100 and 3, respectively.

Three empirically set constants are used to segment the
carotid artery and thyroid gland in transverse and longitudinal
US scans, respectively. These are: (a) the phase congruency
(FS) for the carotid artery; (b) the eccentricity of the ellipse
(Ecc) for the carotid artery; and (c) the intensity range [11, 12]
for the thyroid gland. From the sensitivity analysis plots of Fig.
10, it can be inferred that the algorithm is robust to changes in
Ecc and changes in FS up to 0.55. The best performance of the
algorithm is seen at low values of FS and high values of Ecc.
Accordingly, all experiments for US images in the transverse
scan are conducted by setting FS=0.45 and ECC=0.77. The
algorithm is robust to changes in the intensity range used in
the segmentation of the thyroid gland and the best performance
is seen when the intensity is chosen in the range [50,200].
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carotid artery; and (b) the thyroid gland in transverse and longitudinal scans,
respectively.

Sensitivity analysis for the constants used to segment: (a) the

From table I it can be seen that: the average PRI values
are well above 0.8; average GCE values are close to zero
with values under 0.25; average VOI is not more than 1.5 and
BE is at around 12 pixels (under 1mm). This indicates that
the proposed method is capable of producing good quality
segmentation results with millimetre accuracy.

The average sensitivity for all the anatomical structures,
in both transverse and longitudinal scans is well above 95%
indicating that the possibility of false positive segmentation is
less. The average specificity for all the anatomical structures
except the muscles is well above 83% while that for muscles
is about 73% in the case of transverse scans of Set 2 and 69%
in longitudinal scans. The high sensitivity and low specificity
values for the muscles suggest a possible under-segmentation
of the muscles. The DSC values for all the organs, except for
the muscles in longitudinal scans, are above 82%. The low
value of DSC for the muscles in longitudinal scans is due
to the under-segmentation of the organ by the algorithm. The
average segmentation accuracy is above 92% for all the organs.

From the results of Table V, it can be observed that the
proposed method performs better than the existing methods
used to segment both individual and multiple organs. The
thyroid segmentation method of Chang et al. [12] is found
to under-segment the gland while that of Garg et al. [13] is
found to over-segment the thyroid gland as evidenced by the
respective sensitivity and specificity values in Table V. With
respect to segmenting the carotid artery, the high sensitivity

Detection Accuracy (%)
3 8 58 8 8 3 8 8

100

s 050 08 050 095 o7 080 085 050 0%
DSC values averaged over all experts DSC values averaged over all experts

(@) (b)

Fig. 11. Performance analysis of (a) the carotid artery and (b) the thyroid
gland detectors with (in red) and without (in blue) clustering based on speckle
patch similarity (SPS).

and low specificity values for the star algorithm and the
star kalman algorithm indicate the under-segmentation of the
carotid artery by both methods. The star extended kalman and
the spoke-ellipse algorithms on the other hand perform better
with high sensitivity and specificity values. Of all the methods
proposed to segment the carotid artery, the star extended
kalman algorithm of [57] is the only algorithm that has a
DSC above 80% but is still less than what is achieved by
our method. The multi-organ segmentation method of [21] is
found to over-segment the organs.

One of the key factors for the success of the proposed
method is the usage of speckle related pixels and its sub-
sequent clustering based on a similarity constraint. The plots
in Fig. 11 show the difference in organ detection accuracies
with and without the use of speckle related pixels. Since the
carotid is used as the landmark in transverse scans and the
thyroid is used as the landmark in longitudinal scans to detect
other organs, it suffices to show the detection accuracies of the
carotid and thyroid gland for the transverse and longitudinal
scans, respectively. Without the use of speckle patch similarity,
the carotid is successfully detected in 3 out of the 26 images
in the transverse scan and the thyroid is successfully detected
in 5 out of 14 images in longitudinal scans. Whereas, by
using the speckle patch similarity, the carotid is successfully
detected in all the images in transverse scans and the thyroid is
successfully detected in 92% of the images in the longitudinal
scans. Here, an organ is said to be detected successfully when
the DSC values are greater than 0.70, hence the DSC values
start from 0.70 in the plots of Fig. 11.

Overlap statistics of Section IV-B are used to determine
the inter-observer variation and the results are summarized
in Table VI. The low SP values of E12 when compared
to E21 for all the organs suggest the possibility of expert
1 under-segmenting the organs when compared to expert 2.
Comparing the DSC values in Tables II, III, IV and V to the
inter-observer variation in Table VI, it can be seen that DSC
values obtained by the proposed method are close to the inter-
observer variation. Statistically speaking, there is no significant
difference between the standardized DSC values:

DSC
1 —DSC’
of E1 and E2 in Tables II, IIT and IV as determined by one-
way ANOVA for the Thyroid (F(1,78) = 3.963, p = 0.413),

standardized DSC = In (22)
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TABLE V
COMPARISON WITH EXISTING METHODS * .

S = SUPERVISED. U = UNSUPERVISED. T = TRANSVERSE. L = LONGITUDINAL. S1 = SET 1. S2 = SET 2. SS = SUPERVISED SET

Organ Method Automation Dataset ~ Scan SE SP DSC PPV
S1 T 0.977 £0.010 0.855+0.078  0.854 £ 0.040  0.862 £0.063
S1 L 0.930 +£0.044 0.940+0.034 0.853 £ 0.069 0.790 +0.114
Proposed Full S2 T 0.958 £0.018  0.873+0.083  0.810 £ 0.031  0.767 £ 0.081
SS T 0.970 £ 0.013 0.864 £0.083 0.840 £ 0.040  0.827 £ 0.069
SS L 0.941 +£0.043 0.936 £0.035 0.866 £+ 0.072  0.818 £0.116
S1 T 0.977 £0.017 0.8194+0.090 0.822 +0.048  0.842 £0.101
S1 L 0.933 £0.075 0.857+0.107 0.811+0.096 0.805 £ 0.162
Thyroid Narayan [29] Full S2 T 0.863 £0.122  0.636 =0.303  0.487 £0.270  0.460 £ 0.339
SS T 0.955 +£0.056  0.740+0.270 0.702+0.246  0.705 £ 0.280
SS L 0.966 + 0.015  0.844 +0.095 0.850 £0.051  0.867 £ 0.060
JCR [21] Full SS T 0.679 £0.102 0.922+0.077  0.490 £0.067  0.337 £0.060
SS L 0.449 £0.038  0.930+0.062 0.468 £0.064 0.315 £0.053
Chang [12] Full SS T 0.891 £0.106  0.662+0.258 0.589£0.199  0.598 £ 0.263
SS L 0.856 +0.127  0.457+0.389 0.435+0.376  0.464 £ 0.431
Garg [13] Full SS T 0.524 £0.157  0.955+0.077 0.411£0.074 0.264 £ 0.060
SS L 0.421 +£0.206 0.772+0.370 0.388+0.212 0.266 £+ 0.161
S1 T 0.998 + 0.002 0.886 +£0.077 0.887 £ 0.037  0.897 £ 0.065
Proposed Full S2 T 0.999 +£0.001  0.836 £0.072  0.881 +£0.031  0.939 £0.054
SS T 0.997 £0.002  0.908 £0.056  0.892 +0.031  0.882 £0.063
Star [18] Semi S1 T 0.935+0.089  0.693 £0.338  0.404 +£0.239  0.531 +0.361
S2 T 0.875+0.104  0.813 £0.350  0.303 +0.236  0.371 £0.334
Star Kalman Semi S1 T 0.999 +£0.001  0.576 £0.212  0.700 +£0.154  0.982 +0.044
[15] S2 T 0.999 +£0.001  0.566 £0.197  0.702 +£0.166 ~ 0.998 £0.003
Star Extended Semi S1 T 0.987 +£0.032 0.932 +£0.099  0.827 £0.167  0.793 £0.177
Carotid  Kalman [16] S2 T 0.982 +£0.018 0.930 £0.143  0.757 +£0.125  0.692 £0.212
Spoke Ellipse Semi S1 T 0.982 £0.030  0.935 £0.090  0.742 +£0.206 ~ 0.667 £0.244
[17] S2 T 0.990 £ 0.008  0.962 £0.036  0.839 +0.073  0.755 £0.120
S1 T 0.995 +£0.005  0.845 £0.183  0.809 +0.151  0.805 +0.181
Narayan [29] Full S2 T 0.986 +£0.011  0.783 £0.355  0.680 +0.311  0.620 £0.307
SS T 0.992 +£0.008 0.841 £0.286  0.751 +£0.261  0.695 £0.266
JCR [21] Full SS T 0.965 + 0.040 0.748 +£0.204  0.503 +0.191 0.417 £0.219
S1 T 0.975+£0.023 0.856 £0.130  0.838 +£0.074  0.850 £0.120
S1 L 0.980 +£0.026  0.689 £0.237  0.712 +£0.203  0.823 +0.246
Proposed Full S2 T 0.984 £0.010 0.729 £0.151  0.786 +0.100  0.878 £0.083
SS T 0.978 £0.021  0.806 £0.135  0.817 +£0.075  0.859 +0.118
SS L 0.993 £0.008  0.819 £0.103  0.878 +£0.049  0.960 £0.040
Muscles S1 T 0.980 +0.017 0.737 £0.164  0.780 £0.116  0.862 £0.116
S1 L 0.959 +£0.038  0.859 £0.120  0.788 +£0.106 ~ 0.780 +0.201
Narayan [29] Full S2 T 0.983 £0.016  0.601 £0.254  0.676 +£0.195  0.855 £0.117
SS T 0.977 £0.017  0.676 £0.202  0.732 +£0.148  0.841 +0.114
SS L 0.978 £0.025 0.839 £0.114  0.853 +0.051  0.894 +0.106
JCR [21] Full SS T 0.917 £0.035 0.624 £0.258  0.556 +0.160  0.551 +0.145
SS L 0.885 +0.043  0.940 £0.031  0.745 +£0.108  0.632 £0.148
S1 T 0.977 £0.018  0.880 £0.092  0.850 +0.053  0.835 +0.096
Proposed Full S2 T 0.956 £ 0.040  0.900 £0.078  0.832 +0.085  0.804 £0.156
SS T 0.972 +£0.026  0.907 £0.080  0.856 +0.057  0.826 +0.110
Trachea S1 T 0.963 £0.031  0.876 £0.122  0.780 +£0.110  0.744 £0.177
Narayan [29] Full S2 T 0.977 £0.031  0.291 £0.376  0.249 +0.298  0.555 £0.294
SS T 0.955 +£0.034  0.767 £0.350  0.607 +£0.296  0.607 £0.232
JCR [21] Full SS T 0.862 +0.036  0.804 +0.146  0.526 +0.131 0.407 £0.132

* Results are averaged over both experts.
T Methods whose names are italicized represent multi-organ segmentation algorithms. Unsupervised algorithms are listed first followed by supervised
algorithms for every organ. The results of each algorithm are sorted according to the dataset used from S1 to SS.
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TABLE VI
INTEROBSERVER VARIATION *.

to categorize tissues into different iso-echoic regions that have
been termed as Similarly Reflective Regions. The SRR’s are
used to detect hyper-echoic anatomical landmarks which are
used to detect and segment other organs using local phase
based methods. The proposed method has an overall accuracy
of over 92% and performs better than existing methods to
segment both individual and multiple organs. In conclusion,
speckle related pixels need not be considered as noise and
the echogenicity information contained in these pixels can be
successfully used to detect and segment organs in ultrasound
images.

Organ GT SE SpP DSC PPV
El2 0.993 0.832 0.890 0.961
. +0.006 4+0.088 £0.050 +£0.029
Thyroid
21 0.965 0.961 0.889 0.833
+0.024 4+0.029 £0.051 +£0.088
El2 0.999 0.855 0.901 0.959
. +0.001  4+0.072 £0.030 +£0.042
Carotid
21 0.996 0.959 0.901 0.856
+0.002 4+0.042 £0.049 +0.072
El2 0.997 0.620 0.749 0.978
+0.002 4+0.146 £0.117 +£0.021
Muscles
1 0.926 0.978 0.749 0.620
+0.026  4+0.021  £0.117 +£0.146
El2 0.990 0.786 0.833 0.895
+0.009 4+0.181 £0.173 +£0.186
Trachea
1 0.974 0.895 0.833 0.786
+0.019 4+0.186 £0.173  +£0.181

* E12: Manual segmentation by expert 1 used as GT to quantify
the segmentation by expert 2; E21: Manual segmentation by
expert 2 used as GT to quantify the segmentation by expert 1.

TABLE VII
PERFORMANCE ANALYSIS OF THE CAROTID
SEGMENTATION ALGORITHM ON 971 IMAGES OF
A PUBLIC DATABASE [58].

Proposed method  Riha et al. [58] #
98.14 97

SE (%)

2 Values are as reported in [58] for the same
database.

Carotid (F(1,50) = 4.034, p = 0.289), Muscles (F(1,78) =
3.965, p = 0.964) and Trachea ((F(1,50) = 4.034, p = 0.067)),
at 0.05 significance. Hence, it can be inferred that the results
of the segmentation algorithm do not vary significantly from
the inter-observer variation.

The multi-organ segmentation algorithm presented in this
paper can be used as a general framework to perform: (i)
Computer Aided Diagnosis; (ii) volumetric analysis; and (iii)
US guided interventions. As an example, we demonstrate the
use of this algorithm to assist in US guided interventions by
detecting and tracking the carotid artery in 2D US image
sequences. The carotid segmentation algorithm of Sec. III-B
is tested on 971 images of a publicly available dataset for
carotid detection and tracking. The acquisition details and the
link to the database can be found in [58]. The results of
comparison are provided in Table VII. From the table it can
be observed that the proposed method performs better than the
performance reported in [58] for the same database. Extension
of the proposed method to applications related to computer
aided diagnosis and volumetric analysis will be taken up as one
of the future works which includes multi-organ segmentation
in images with abnormality.

VI. CONCLUSION

In this research work, the echogenicity information in
speckle related pixels is made use of in a constructive fashion
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